T-matrix computations of light scattering by red blood cells.

نویسندگان

  • A M Nilsson
  • P Alsholm
  • A Karlsson
  • S Andersson-Engels
چکیده

The electromagnetic far field, as well as the near field, originating from light interaction with a red blood cell (RBC)volume-equivalent spheroid, was analyzed by utilizing theT-matrix theory. This method is a powerful tool thatmakes it possible to study the influence of cell shape on the angulardistribution of scattered light. General observations were that thethree-dimensional shape, as well as the optical thickness apparent tothe incident field, affects the forward scattering. Thebackscattering was influenced by the shape of the surface facing theincident beam. Furthermore sphering as well as elongation of anoblate RBC into a volume-equivalent sphere or a prolate spheroid, respectively, was theoretically modeled to imitate physiologicalphenomena caused, e.g., by heat or the increased shear stress offlowing blood. Both sphering and elongation were shown to decreasethe intensity of the forward-directed scattering, thus yielding lowerg factors. The sphering made the scattering patternindependent of azimuthal scattering angle phi(s), whereas the elongation induced more apparent phi(s)-dependent patterns. The lightscattering by a RBC volume-equivalent spheroid was thus found to behighly influenced by the shape of the scattering object. Anear-field radius r(nf) was evaluated as thedistance to which the maximum intensity of the total near field haddecreased to 2.5 times that of the incident field. It was estimatedto 2-24.5 times the maximum radius of the scattering spheroid, corresponding to 12-69 mum. Because the near-field radiuswas shown to be larger than a simple estimation of the distance betweenthe RBC's in whole blood, the assumption of independent scattering, frequently employed in optical measurements on whole blood, seemsinappropriate. This also indicates that one cannot extrapolate theresults obtained from diluted blood to whole blood by multiplying witha simple concentration factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light scattering of human red blood cells during metabolic remodeling of the membrane.

We present the light scattering properties of individual human red blood cells (RBCs). We show that both the RBC static and dynamic scattering signals are altered by adenosine 5'-triphosphate (ATP)-driven membrane metabolic remodeling. To measure the light scattering signal from individual RBCs, we use diffraction phase microscopy together with a Fourier transform light scattering technique. RB...

متن کامل

Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method.

The invariant imbedding T-matrix method (II-TM) is employed to simulate the optical properties of normal biconcave and deformed red blood cells (RBCs). The phase matrix elements of a RBC model computed with the II-TM are compared with their counterparts computed with the discrete-dipole approximation (DDA) method. As expected, the DDA results approach the II-TM results with an increase in the n...

متن کامل

Anomalous diffraction by arbitrarily oriented ellipsoids: applications in ektacytometry.

Anomalous diffraction by an arbitrarily oriented ellipsoid with three different axes is derived. From the resulting expression the relationship between the shape of the ellipsoid and the intensity pattern is immediately evident: The axial ratio of the elliptical isointensity curve equals the axial ratio of the elliptical projected area of the ellipsoid. A comparison of anomalous diffraction wit...

متن کامل

Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method.

Numerical simulations of light scattering by a biconcave shaped human red blood cell (RBC) are carried out using the finite-difference time-domain (FDTD) method. A previously developed FDTD code for the study of light scattering by ice crystals is modified for the current purpose and it is validated against Mie theory using a spherically shaped RBC. Numerical results for the angular distributio...

متن کامل

Light scattering by an erythrocyte based on discrete sources method Shape and refractive index influence

Keywords: Red blood cell Light scattering Discrete sources method a b s t r a c t An efficient method for the fast detection of properties of a single erythrocyte from its scattering characteristics is needed in practice. To develop such a method a detailed investigation of the light scattering properties of the erythrocyte and their dependence on its shape and refractive index is of great inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 37 13  شماره 

صفحات  -

تاریخ انتشار 1998